10月份是什么星座的| 女生喜欢吃酸说明什么| 眼睛有点模糊是什么原因| 猪润是什么| 风寒感冒吃什么消炎药| 山魈是什么| 低压高会引起什么后果| 外阴瘙痒什么原因引起| 梦见生肉是什么征兆| 什么是假性抑郁症| 太多的理由太多的借口是什么歌| 身高用什么单位| 急性荨麻疹是什么原因引起的| 玩票是什么意思| 活学活用是什么意思| 晚上睡觉尿多是什么原因| 鱼豆腐是用什么做的| 植物的茎有什么作用| 希鲮鱼是什么鱼| 淋巴肿了吃什么消炎药| 喝什么解酒快| 月经不停吃什么药| 考试前吃什么提神醒脑| 肩胛骨疼痛是什么原因| 病毒性发烧吃什么药| 黄帝是一个什么样的人| 眼睛双重影什么原因| 壁虎吃什么食物| 西南方向五行属什么| 为什么一直咳嗽| 松鼠的尾巴有什么作用| 吃饭快了有什么坏处| 雪貂吃什么| 恪尽职守什么意思| 小卡是什么| 肩袖损伤吃什么药效果最好| 看胃病挂什么科| 香蕉不能和什么水果一起吃| 甘油是什么油| 石斛长什么样子图片| a型血rh阳性是什么意思| 头晕是为什么| 心肌缺血是什么原因引起的| 爽肤水和精华水有什么区别| 中央电视台台长什么级别| 甘油三酯高是什么意思| 毓读什么| 海螺吃什么食物| 宝宝满周岁送什么礼物| 荨麻疹吃什么药好| 新生儿甲状腺偏高有什么影响| 什么昆虫最值钱| 仔细的什么| 奶咖色是什么颜色| h是什么元素| 30号来的月经什么时候是排卵期| 甲状腺炎有什么症状表现| 长子是什么意思| 头臂长是什么意思| 6月18日是什么节日| 大量出汗是什么原因| 9月19是什么星座| 一什么珍珠| pinsp呼吸机代表什么| 1981属什么生肖| 一月九号是什么星座| 苍龙七宿的秘密是什么| 双鱼座是什么星座| 水瓶座的幸运色是什么颜色| 虫可念什么| 指甲弯曲是什么原因| 柿子和什么不能一起吃| 本色出演是什么意思| 芋头是什么季节的| 腿上有淤青是什么原因| 金牛座和什么座最配| 依托是什么意思| 补肺养肺吃什么食物最好| 属兔与什么属相相克| 头发油腻是什么原因| 为什么有的人特别招蚊子| 卢沟桥事变又称什么| 发光免疫是检查什么的| 与生俱来是什么意思| 70年是什么婚| 八字华盖是什么意思| 什么是夜店| 脂肪垫是什么| 左肝钙化灶是什么意思| 老是打哈欠是什么原因| e抗体阳性说明什么| 狐媚子是什么意思| 看输卵管是否堵塞做什么检查| 吃什么吐什么是怎么回事| 雷震子是什么神| 什么品牌的床好| 东施效颦什么意思| 优字五行属什么| 高血糖能吃什么| 胃不好能吃什么| 1926年属什么生肖| graff是什么牌子| 啧啧啧什么意思| 生意是什么意思| 花裤子配什么上衣| 7月19号是什么星座| 公婆是什么意思| 白带呈绿色是什么原因| 虚热吃什么药| 保外就医是什么意思| 雄性激素是什么| 正常龟头什么样子| 智齿为什么会长出来| 尿蛋白高是什么病| 财多身弱什么意思| 鱼加思读什么| 备孕需要注意些什么| 前列腺增生有什么症状表现| 梦见老板是什么意思| 宋江是什么生肖| 印堂发亮预兆着什么| 胃病挂什么科| 长明灯是什么意思| 不痛经说明什么| 女性尿路感染什么原因引起的| 什么时候不能喷芸苔素| 第四个手指叫什么| 停休是什么意思| 九层塔是什么菜| 自讨没趣什么意思| 夜来香是什么花| 化疗能吃什么水果| 梦见女尸是什么预兆| zara是什么牌子| 1964属什么| 为什么空腹血糖比餐后血糖高| 兔子五行属什么| 什么叫椎间盘膨出| 高血糖不能吃什么| 518是什么星座| 一什么圆月| 喉咙痛有痰吃什么药| 下巴长硬包是什么原因| 腺体是什么| 2021年属什么| ket是什么意思| 来例假吃什么水果| 手机合约版是什么意思| tct是什么意思| 梦见春梦是什么意思| 什么水果热量低| 白带什么味道| 广州为什么叫花城| 炖牛肉放什么调料最好| 八婆什么意思| 一直以来是什么意思| 抗生素药对人体有什么危害| 天可以加什么偏旁| 手指关节疼痛是什么原因| 臭氧是什么| 属猴本命佛是什么佛| 护士证什么时候下来| 梦见亲人哭是什么征兆| 喝菊花茶有什么好处| 奔是什么生肖| 驱除鞑虏是什么意思| 肚子左侧是什么器官| 观音坐莲是什么姿势| 全麻对身体有什么危害| 不可小觑什么意思| ket是什么意思| 什么是电子烟| 病毒感染会有什么症状| 什么的眼睛| 朱砂是什么| 木林森属于什么档次| 夏天喝什么水最解渴| 香蕉像什么比喻句| 掌中宝是什么部位| 398是什么意思| 舒张压偏高是什么原因| 子宫在什么位置| 为什么睡觉磨牙| 乳腺增生的前兆是什么| 备注是什么意思| 半夜腿抽筋是什么原因| 梦见纸钱是什么预兆| 幽门螺杆菌是什么引起的| 千山鸟飞绝的绝是什么意思| 儿童抽动症挂什么科| oppo是什么牌子| 小叶紫檀五行属什么| 屎壳郎是什么意思| 11月出生是什么星座| 福尔马林是什么| 脸上长疣是什么原因| 刚怀孕肚子有什么变化| 美国为什么不建高铁| 维生素d什么牌子的好| 什么样的歌声| 脱盐乳清粉是什么| dfi是什么意思| 儿童喉咙发炎吃什么药| pashmina是什么面料| 有冬瓜西瓜南瓜为什么没有北瓜| 丹参片和复方丹参片有什么区别| 什么的北京| 合肥什么时候出梅| 一见倾心什么意思| 请人原谅说什么| 城头土命是什么意思| pm是什么职位| 职场是什么意思| 拉肚子拉稀是什么原因| 云字属于五行属什么| 参详意思是什么| 5月23日是什么日子| 毛主席的女儿为什么姓李| 胎停是什么原因引起的| human什么意思| 数字8五行属什么| 窦性心律不齐是什么意思| 算计是什么意思| 拉青色大便是什么原因| 读书与吃药是什么生肖| 是的是什么意思| 女人右手中指有痣代表什么| 喝菊花茶有什么好处| 1月10号是什么星座| 国防科技大学毕业是什么军衔| 龙凤胎是什么意思| 烦闷是什么意思| 保卡是什么意思| 90年出生属什么生肖| 手脚发热吃什么药| 什么叫轻断食| 令瓦念什么| 间接胆红素是什么意思| 吃醋是什么意思| 高血糖可以吃什么水果| 身份证照片穿什么颜色衣服| 胃肠镜检查挂什么科| 寒冷性荨麻疹是什么原因引起的| 男生小便尿道刺痛什么原因| 什么的春寒| 同房后需要注意什么| 7月15号是什么星座| 什么穿针大眼瞪小眼| 湿寒吃什么中成药| 吃避孕药为什么要吃维生素c| 6月6号是什么星座| 黑蛇是什么蛇| 榴莲皮有什么功效| 男人做噩梦是什么预兆| 什么能代替润滑油| 坐班什么意思| 长白班是什么意思| 3月1号是什么星座| 小便泡沫多是什么原因| 香芋是什么| 文气是什么意思| 什么药止咳最好| 副主任医师什么级别| 梦见自己和别人吵架是什么意思| 百度
This is the Trace Id: 2c08bdd8978404eb93a91ea99e05888c
Skip to main content
Azure

新疆:乌鲁木齐至尉犁县将高速公路进入招标环节

Learn how to use small language models to innovate faster and more efficiently with AI.?

An overview of small language models (SLMs)

Small language models (SLMs) are computational models that can respond to and generate natural language. SLMs are trained to perform specific tasks using fewer resources than larger models.

Key takeaways

  • Small language models (SLMs) are a subset of language models that perform specific tasks using fewer resources than larger models.
  • SLMs are built with fewer parameters and simpler neural architectures than large language models (LLMs), allowing for faster training, reduced energy consumption, and deployment on devices with limited resources.
  • Potential limitations of SLMs include a limited capacity for complex language and reduced accuracy in complex tasks.
  • Advantages of using SLMs include lower costs and improved performance in domain-specific applications.

How do SLMs work?

A small language model (SLM) is a computational model that can respond to and generate natural language. SLMs are designed to perform some of the same natural language processing tasks as their larger, better-known large language model (LLM) counterparts, but on a smaller scale. They’re built with fewer parameters and simpler neural network architectures, which allows them to operate with less computational power while still providing valuable functionality in specialized applications.

Basic architecture

Small language models are build using simplified versions of the artificial neural networks found in LLMs. Language models have a set of parameters—essentially, adjustable settings—that they use to learn from data and make?predictions. SLMs contain far fewer parameters than LLMs, making them faster and more efficient than larger models. Where LLMs like GPT-4 can contain more than a trillion parameters, an SLM might only contain a few hundred million. Smaller architecture allows SLMs to perform natural language processing tasks in domain-specific applications, like customer service chatbots and virtual assistants, using much less computational power than LLMs.

Key components

Language models break text into word embeddings—numerical representations that capture the meaning of words—which are processed by a transformer using an encoder. A decoder then produces a unique response to the text.

Training process

Training a language model involves exposing it to a large dataset called a text corpus. SLMs are trained on datasets that are smaller and more specialized than those used by even relatively small LLMs. The dataset SLMs train on is typically specific to their function. After a model is trained, it can be adapted for various specific tasks through fine-tuning.
BENEFITS

The advantages of using small language models

SLMS offer numerous advantages over LLMs:

Lower computational requirements

Small language models require less computational power, making them ideal for environments with limited resources. This efficiency enables the use of these models on smaller devices.

Decreased training time

Small models train faster than larger ones, allowing for quicker iterations and experimentation. Reduced training time accelerates the development process, to facilitate faster deployment and testing of new applications.

Simplified deployment on edge devices

Their compact size and lower resource requirements make SLMs ideal for edge devices. SLMs can run efficiently without needing constant cloud connectivity, improving performance and reliability by processing data locally.

Reduced energy consumption

SLMs use less energy. This makes them more environmentally friendly and cost-effective than LLMs.

Improved accuracy

Because their training is focused on specific tasks, SLMs can provide more accurate responses and information within the areas they’re trained in. Their specialized nature allows for fine-tuning that often outperforms larger models in domain-specific applications.

Lower costs

The reduced computational requirements, training time, and energy consumption of SLMs result in lower overall costs. This affordability makes them accessible to a broader range of people and organizations.

Challenges and limitations of SLMs

Small language models are designed to be efficient and lightweight. This design can lead to constraints on their ability to process and understand complex language, potentially reducing their accuracy and performance in handling intricate tasks.

Here are a few common challenges associated with SLMs:
Limited capacity for complex language comprehension:
If LLMs pull information from a sprawling, all-encompassing library, SLMs pull from a small section of the library, or maybe even a few highly specific books. This limits the performance, flexibility, and creativity of SLMs in completing complex tasks that benefit from the additional parameters and power of LLMs. SLMs may struggle to grasp nuances, contextual subtleties, and intricate relationships within language, which can lead to misunderstandings or oversimplified interpretations of text.
Potential for reduced accuracy on complex tasks:
Small language models often face challenges in maintaining accuracy when tasked with complex problem-solving or decision-making scenarios. Their limited processing power and smaller training datasets can result in reduced precision and increased error rates on tasks that involve multifaceted reasoning, intricate data patterns, or high levels of abstraction. Consequently, they may not be the best choice for applications that demand high accuracy, such as scientific research or medical diagnostics.
Limited performance:
The overall performance of small language models is often constrained by their size and computational efficiency. While they are advantageous for quick and cost-effective solutions, they might not deliver the robust performance required for demanding tasks.

These and other limitations make SLMs less effective in applications that require?deep learning.?Developers should consider the limitations of SLMs against their specific needs.

Types of small language models

SLMs can be categorized into three main types: distilled versions of larger models, task-specific models, and lightweight models.

Distilled versions of larger models

In this approach, a large teacher model is used to train a smaller student model, which learns to mimic the behavior of the teacher. The student model retains much of the teacher's knowledge but requires fewer parameters and less computational power. Distillation allows for efficient deployment of language models in environments where resources are limited, while still maintaining a high level of performance. One popular distilled SLM is DistilBERT, which offers comparable performance to its larger counterpart, BERT, but with reduced size and faster inference times.

Task-specific models

Task-specific models are small language models tailored for particular tasks or domains. Unlike general-purpose models like ChatGPT, these models are?fine-tuned to excel in specific applications, such as sentiment analysis, translation, or question answering. By focusing on a narrow set of tasks, task-specific models can sometimes achieve higher accuracy and efficiency than more generalized models. They are particularly useful when high performance is needed for a particular task, and the model's scope can be limited to optimize resource usage.

Lightweight models

Lightweight models are built with fewer parameters and architectures optimized to minimize computational demands while still delivering strong performance. They are often used in mobile applications, edge devices, or other scenarios where computational resources are limited.

Use cases for SLMs

Small language models are optimized for specific applications, making them ideal for environments with limited resources or specific needs. Some key use cases for SLMs include on-device applications, real-time language processing, and low-resource settings.

On-device applications

SLMs are well-suited for on-device applications, where computational resources are limited, and privacy is a concern. By running directly on devices like smartphones, tablets, and smart speakers, these models can perform tasks such as voice recognition, text prediction, and language translation without relying on constant internet connectivity and cloud computing services. This enhances user privacy by keeping data processing local and improves the responsiveness of applications. Examples include predictive text input, virtual assistants, and offline translation services.

Real-time language processing

In scenarios where quick response times are critical, small language models offer significant advantages because of their fast response time. Real-time language processing is essential in applications like chatbots, customer service automation, and live transcription services. These models can handle language tasks with minimal latency, providing users with immediate feedback and seamless interactions.

Low-resource settings

SLMs are particularly valuable in low-resource settings where computational power and bandwidth are limited. They can be deployed on affordable hardware, which makes them accessible to more people and organizations.

Emerging SLM trends and advancements

Small language models represent a significant advancement in the field of natural language processing and?machine learning. Their ability to understand and generate human-like text has opened up new possibilities for various applications, from customer service to content creation. As language models continues to evolve, SLMs will likely become more sophisticated and offer more capabilities with greater efficiency. Here are a few emerging SLM trends and advancements:
Advancements in model efficiency and compression techniques:
Ongoing research is expected to yield more efficient models with improved compression techniques. These advancements will further enhance the capabilities of SLMs, allowing them to tackle more complex tasks while maintaining their smaller size. For instance, the latest version of the Phi-3 SLM now has computer vision capabilities.
Broader applications as edge computing grows:
As edge computing becomes more prevalent, SLMs will find applications in a wider range of fields, addressing diverse needs and expanding their reach. The ability to process data locally on edge devices opens new possibilities for real-time and context-aware AI solutions.
Addressing current limitations
Efforts to improve accuracy and handle diverse languages are ongoing. By addressing these limitations, researchers aim to enhance the performance of SLMs across different languages and contexts, making them more versatile and capable.?
Hybrid models and federated learning:
Federated learning and hybrid models are paving the way for more robust and versatile SLMs. Federated learning allows models to be trained across multiple devices without sharing sensitive data, enhancing privacy and security. Hybrid models, which combine the strengths of different architectures, offer new opportunities for optimizing performance and efficiency.

These trends underscore the growing impact of small language models in making AI more accessible, effective, and adaptable to a wide range of applications. As they continue to evolve, SLMs will become essential tools, driving innovation in AI across different environments and industries.?
RESOURCES ?

Learn new skills and explore the latest developer technology.?

Student developers

Jumpstart your career in tech

Gain skills to jump-start your career in tech and make a positive impact on the world.
Azure resources

Explore the Azure resource center

Explore Azure training and certification programs, Q&As, events, videos, and other resources for developers.
Microsoft Learn

Azure AI learning hub

Gain the skills you need to accelerate AI implementation at scale.

FAQ

  • 百度 第2级自动驾驶的自动化程度相比1级要更高一些,在自适应巡航时可以自己保持车道不偏离、泊车时也可以不用驾驶者来干预,现在少部分的车辆能够做到这一点,此次推出的IACC技术就是这个级别。

    SLMs are designed for tasks requiring fewer computational resources. LLMs offer greater capabilities but require much more processing power. SLMs are ideal for edge computing and low-resource environments, whereas LLMs excel in handling complex tasks.

  • Small language models are ideal for tasks that require efficiency, such as running applications in low-resource environments or where quick responses are crucial. They’re also useful for specific tasks that don't require the extensive capabilities of a large language model.

  • The advantages of using an SLM over an LLM include lower computational requirements, faster response times, and suitability for deployment on edge devices. SLMs are more efficient and cost-effective for tasks that?don't require the extensive capabilities of a large language model. This makes them ideal for real-time applications and environments with limited resources.

糖尿病吃什么主食最好 什么样的人容易得结石 腊八粥是什么节日 辣椒什么时候种 排卵是什么
血糖高的人能吃什么水果 肠易激综合症什么症状 3月18是什么星座 善存什么时间吃比较好 操姓氏读什么
失格是什么意思 莲字五行属什么 肾虚什么意思 婴儿湿疹用什么药膏最有效 飞机杯有什么用
4.19是什么星座 银属于五行属什么 n表示什么 什么是瘦马 痛风病人不能吃什么
什么是杀青hcv8jop4ns8r.cn 灵芝泡水喝有什么功效hcv8jop7ns8r.cn ngu是什么意思hcv9jop0ns9r.cn 胃反酸是什么原因造成的hcv7jop6ns6r.cn 髂静脉在什么位置hcv7jop4ns7r.cn
adivon是什么牌子hcv9jop0ns4r.cn 玄色是什么颜色hcv9jop1ns2r.cn 为什么人要喝水hcv8jop8ns3r.cn 咽喉干燥是什么原因hcv9jop0ns3r.cn 乡镇党委书记是什么级别hcv8jop2ns0r.cn
百里挑一是什么生肖hcv9jop6ns0r.cn 复方乙酰水杨酸片是什么药hcv8jop3ns7r.cn 宫腔积液排出什么颜色hcv9jop3ns4r.cn 什么是五常大米hcv8jop4ns1r.cn 歹人是什么意思0735v.com
养老金什么时候补发hcv9jop5ns6r.cn 生活老师是做什么的sanhestory.com 亦什么意思hcv9jop7ns4r.cn 4月25日是什么星座0735v.com 女性尿路感染吃什么药hcv8jop7ns2r.cn
百度